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Abstract

We present a multiscale unsupervised segmenter for
automatic detection of potentially cancerous regions
of interest containing fibroglandular tissue in digital
screening mammography. The mammogram tissue tex-
tures are locally represented by four causal multispec-
tral random field models recursively evaluated for each
pixel and several scales. The segmentation part of the
algorithm is based on the underlying Gaussian mixture
model and starts with an over segmented initial estima-
tion which is adaptively modified until the optimal num-
ber of homogeneous mammogram segments is reached.
The performance of the presented method is verified
on the Digital Database for Screening Mammography
(DDSM) from the University of South Florida as well
as extensively tested on the Prague Texture Segmenta-
tion Benchmark and compares favourably with several
alternative unsupervised texture segmentation methods.

1. Introduction

Breast cancer is the leading cause of death [17, 15]
among all cancers for middle-aged women in most de-
veloped countries. Thus a significant effort is cur-
rently focused on cancer prevention and early detection
which can substantially reduce the mortality rate. X-ray
screening mammography is the most frequented method
for breast cancer early detection although not without
problems [15] such as rather large minimum detectable
tumor size, higher mammogram sensitivity for older
women or radiation exposition. Automatic mammo-
gram analysis is still difficult task due to wide variation
of breast anatomy, nevertheless a computer-aided diag-
nosis system can successfully assist a radiologist, and
can be used as a second opinion. The first step in a such
system is detection of suspicious potentially cancerous
regions of interest . Several approaches to detect these
regions of interest (ROI) were published [17], mostly
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based on supervised learning. We propose an unsuper-
vised segmentation method for fast automatic mammo-
gram segmentation into the regions of interest (ROI) us-
ing a statistical random field based texture representa-
tion. The presented method detects the fibroglandular
tissue regions from either craniocaudal (CC) or medi-
olateral oblique (MLO) views and thus can help focus
a radiologist to this most important breast region. Spa-
tial interaction models and especially Markov random
fields-based models are increasingly popular for texture
representation [10, 16, 5], etc. Several researchers dealt
with the difficult problem of unsupervised segmentation
using these models see for example [12, 14, 1], or [7],
which is also addressed in this paper.

2. Breast Detector

The method starts with automatic breast area detec-
tion because it can be easily computed and simplifies
the subsequent fibroglandular tissue region detection.
This is performed using simple histogram thresholding
with an automatically selected threshold. In this step the
method also recognizes several label areas on a mam-
mogram. We compute their areas and all but the largest
one are discarded and merged with the background. In
this stage the algorithm also decides the breast orienta-
tion (left or right) on the mammogram. Fig. 1 -breast
mask illustrates the resulting detected breast area (in in-
verted grey levels). The following detection of regions
of interest is performed only in the breast region ignor-
ing the background area set in the mask template.

3. Breast Tissue Texture Model

Our method segments pseudo-colour multiresolution
mammograms each created from the original greyscale
mammogram and its two nonlinear gamma transforma-
tions. We assume to down-sample input image Y into
M =3 different resolutions Y (") =|*» Y with sam-
pling factors ¢,, m = 1,...,M identical for both
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Figure 1. Normal right breast mammo-
gram (patient age 58, but with a cancer-
ous lesion in the left breast), the detected
breast area, segmentation result and de-
tected regions of interest, respectively.

directions and Y () = Y. Local texture for each pixel
Yr(m) is represented using the 3D CAR model param-
eter space @ﬁm). The concept of decision fusion [11]
for high-performance pattern recognition is well known
and widely accepted in the area of supervised classi-
fication where (often very diverse) classification tech-
nologies, each providing complementary sources of in-
formation about class membership, can be integrated
to provide more accurate, robust and reliable classifi-
cation decisions than the single classifier applications.
The proposed method circumvents the problem of mul-
tiple unsupervised segmenters combination [6] by fus-
ing multiple-processed measurements into a single seg-
menter feature vector.

Smooth pseudo-colour mammogram textures require
three dimensional models for adequate representation.
We assume that single multi spectral texture can be lo-
cally modeled using a 3D simultaneous causal autore-
gressive random field model (CAR). This model can

be expressed as a stationary causal uncorrelated noise
driven 3D autoregressive process [8]:

Y;:7Xr+er s (1)

where v = [Ay,...,A4,] is the 3 x 3n parame-
ter matrix, e, is a white Gaussian noise vector with
zero mean and a constant but unknown variance, X,
is a corresponding vector of the contextual neighbours
Y, s and r,7 — 1,...is a chosen direction of move-
ment on the image index lattice I. 7 = card(If)
where I: 1is a causal neighborhood index set (e.g.
I¢ = {(r1,72 — 1), (r1 — 1,72)}). The optimal neigh-
bourhood (I7) as well as the Bayesian parameters esti-
mation of a CAR model can be found analytically un-
der few additional and acceptable assumptions using the
Bayesian approach [8]. The recursive Bayesian param-
eter estimation of the CAR model is [8]:
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where V,(_1) = ;;i XpXil + V(o). Each matrix
contains local estimations of the CAR model param-
eters. These models have identical contextual neigh-
bourhood I¢ but they differ in their major movement
direction (top-down, bottom-up, rightward, leftward).
The local texture for each pixel and M resolutions
ai,...,ap is represented by four parametric matrices
t,byrl eg A% fori € {t,b,rl},j =1,.... M
which are subsequently compressed using the local
PCA (for computational efficiency) into 5,/"’ . Single
resolution compressed parameters are composed into
M parametric matrices:

T T = (A A A A =1 M
The parametric space Y%/ is subsequently smooth out,
rearranged into a vector and its dimensionality is re-
duced using the PCA feature extraction (7%7). Finally
we add the average local spectral values (7 to the
resulting feature vector:

@T:[ﬁgl, glv"'v’ngvggM]T : (2)
Rough scale pixels parameters are simply mapped to the
corresponding fine scale locations.

4. Texture Parametric Space Segmentation

Multi-spectral, multiresolution texture segmentation
is done by clustering in the combined CAR models pa-
rameter space © defined on the lattice I where ©,. is



the modified parameter vector (2) computed for the lat-
tice location r. We assume that this parametric space
can be represented using the Gaussian mixture model
(GM) with diagonal covariance matrices due to the pre-
vious CAR parametric space decorrelation. The Gaus-
sian mixture model for CAR parametric representation
is as follows:
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The mixture model equations (3),(4) are solved using
a modified EM algorithm. The algorithm is initialized
using v;, 3, statistics estimated from the correspond-
ing regions obtained by regular division of the input
detected breast area. An alternative initialization can
be random choice of these statistics. For each possible
couple of regions the Kullback Leibler divergence
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is evaluated and the most similar regions, i.e.,

{i,j} = argmin D (p(©; [, 1) || p(Or | vk, X))

are merged together in each step. This initialization
results in K;,; subimages and recomputed statistics
Vi, 2;. Kin; > K where K is the optimal number
of textured segments to be found by the algorithm. Two
steps of the EM algorithm are repeating after the initial-
ization. The components with smaller weights than a
fixed threshold (p; < 0 0L x,,;) are eliminated. For every
pair of components we estlmate their Kullback Leibler
divergence (5). From the most similar couple, the com-
ponent with the weight smaller than the threshold is
merged to its stronger partner and all statistics are ac-
tualized using the EM algorithm. The algorithm stops
when either the likelihood function has negligible in-
crease (L — L;_1 < 0.01) or the maximum iteration
number threshold is reached.

The parametric vectors representing texture mosaic
pixels are assigned to the clusters according to the high-
est component probabilities, i.e., Y,. is assigned to the
cluster wj= if

Ty j* = MOT; Z wep(Or—s |V, %5)
sel,
where w; are fixed distance-based weights, I, is a
rectangular neighbourhood and 7, j« > mp,e (other-
wise the pixel is unclassified). The area of single clus-
ter blobs is evaluated in the post-processing thematic
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Figure 2. Cancerous mammograms (pa-
tients age 58 (top) and 80 (bottom)), ra-
diologist associated ground truth and de-
tected regions of interest using the multi-
ple segmenter approach, respectively.

map filtration step. Regions with similar statistics are
merged. Thematic map blobs with area smaller than a
given threshold are attached to its neighbour with the
highest similarity value. Finally, regions which have
grey level mean value difference from the median mean
value (over the same type of digitized mammograms)
of cancerous ground truth regions larger than a speci-
fied threshold are eliminated.

5. Experimental Results

The algorithm was tested on mammograms from
the Digital Database for Screening Mammography
(DDSM) from the University of South Florida [9]. This
database contains 2620 four view (left and right cran-
iocaudal (CC) and mediolateral oblique (MLO)) mam-
mograms in different resolutions. Single mammograms
cases are divided into normal, benign, benign without
callback volumes and cancer. All our experiments are
done with three resolutions (M = 3) using sampling
factors 11 = 2,19 = 4,13 = 8 and the causal neigh-
bourhood with fourteen neighbours (n = 14). Fig.
2-top show left MLO mammogram of a patient age
58 with detected malignant asymmetric lesion and the



right CC mammogram (Fig. 2-bottom) of a patient age
80 with detected irregular, spiculated malignant lesion
type. The segmenter correctly found the region of inter-
est with the cancer lesion on both mammograms. The
detected region of interest results Figs. 1-2 demon-
strate very good region segmentation and low over-
segmentation properties of our method. The general
segmentation part of our method (without mammogra-
phy specific steps) was also successfully numerically
compared [6] with several alternative algorithms JSEG
[4], Blobworld [2], GMRF-GM [7] and Edison [3].
These algorithms on the Prague Texture Benchmark
[7, 13] performed steadily worse as can be seen in the
[6] or on the benchmark web (http://mosaic.utia.cas.cz).
For all the 27 benchmark criteria our method is either
the best one or the next best with marginal difference
from the best one. Resulting ROI segmentation re-
sults are promising however comparison with other al-
gorithms is difficult because of lack of sound experi-
mental evaluation results in the field of screening mam-
mography segmentation.

6. Conclusions

We proposed the efficient method for completely au-
tomatic unsupervised detection of mammogram fibrog-
landular tissue regions of interest. This method is based
on the underlying 3D CAR and GM texture models. Al-
though our algorithm uses Markovian models it is fast
due to robust recursive models parameter estimation
and therefore it is much faster than usual Markovian ap-
proaches which often require time consuming iterative
Markov chain Monte Carlo methods to estimate their
parameters. Usual drawback of segmentation methods
are many application dependent parameters to be ex-
perimentally estimated. Our method requires only a
contextual neighbourhood selection and two additional
thresholds. The algorithm’s performance is favourably
demonstrated on the extensive benchmark tests on large
screening mammography database and also natural tex-
ture mosaics Prague benchmark ([6, 13]), where it out-
performs several alternative segmenters.
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